A set of ortho-, meta- and para-substituted cinnamic hydroxamic acids (CHAs) was synthesized. In each series of structural isomers, a phenyl substituent was linked to an aromatic ring of the parent cinnamic acid via a linker of one to four atoms in length. Using a cell test system with the full-length replicon of hepatitis C virus (HCV), we established a relationship between the suppression of HCV replicon propagation and the inhibition of class I/IIb histone deacetylases (HDACs). Anti-HCV activity correlated with the inhibition of HDAC8 in the case of ortho-CHAs, while in the case of meta-CHAs it correlated with the inhibition of HDAC1/2/3 and HDAC6. The antiviral activity of para-CHAs was many times stronger than that of meta-CHAs with about the same efficiency of HDAC1/2/3/6 inhibition, which indicated the existence of an additional cell target that does not belong to the studied group of HDACs.
Keywords: Anti-HCV activity; Cell viability; Cinnamic hydroxamic acids; Inhibition of histone deacetylases.
Copyright © 2019 Elsevier Masson SAS. All rights reserved.