Modeling reciprocal effects in medical research: Critical discussion on the current practices and potential alternative models

PLoS One. 2019 Sep 27;14(9):e0209133. doi: 10.1371/journal.pone.0209133. eCollection 2019.

Abstract

Longitudinal designs provide a strong inferential basis for uncovering reciprocal effects or causality between variables. For this analytic purpose, a cross-lagged panel model (CLPM) has been widely used in medical research, but the use of the CLPM has recently been criticized in methodological literature because parameter estimates in the CLPM conflate between-person and within-person processes. The aim of this study is to present some alternative models of the CLPM that can be used to examine reciprocal effects, and to illustrate potential consequences of ignoring the issue. A literature search, case studies, and simulation studies are used for this purpose. We examined more than 300 medical papers published since 2009 that applied cross-lagged longitudinal models, finding that in all studies only a single model (typically the CLPM) was performed and potential alternative models were not considered to test reciprocal effects. In 49% of the studies, only two time points were used, which makes it impossible to test alternative models. Case studies and simulation studies showed that the CLPM and alternative models often produce different (or even inconsistent) parameter estimates for reciprocal effects, suggesting that research that relies only on the CLPM may draw erroneous conclusions about the presence, predominance, and sign of reciprocal effects. Simulation studies also showed that alternative models are sometimes susceptible to improper solutions, even when reseachers do not misspecify the model.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Data Interpretation, Statistical
  • Longitudinal Studies*
  • Models, Statistical*
  • Practice Guidelines as Topic*
  • Research Design / standards*

Grants and funding

This research was supported in part by JSPS Kakenhi, Grant Number 26885007 and 16K17305 (Satoshi Usami), and Leverhulme Trust Research Leadership Award, Award Number RL-2016-030, and JSPS Kakenhi, Grant Number 16H06406 (Kou Murayama). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.