Discovery of new small molecule inhibitors targeting isocitrate dehydrogenase 1 (IDH1) with blood-brain barrier penetration

Eur J Med Chem. 2019 Dec 1:183:111694. doi: 10.1016/j.ejmech.2019.111694. Epub 2019 Sep 13.

Abstract

Isocitrate dehydrogenase 1 (IDH1), which catalyzes the conversion of isocitrate to α-ketoglutarate, is one of key enzymes in the tricarboxylic acid cycle (TCA). Hotspot mutation at Arg132 in IDH1 that alters the function of IDH1 by further converting the α-ketoglutarate(α-KG) to 2-hydroxyglutarate (2-HG) have been identified in a variety of cancers. Because the IDH1 mutations occur in a significant portion of gliomas and glioblastomas, it is important that IDH1 inhibitors have to be brain penetrant to treat IDH1-mutant brain tumors. Here we report the efforts to design and synthesize a novel serial of mutant IDH1 inhibitors with improved activity and the blood-brain barrier (BBB) penetration. We show that compound 5 exhibits good brain exposure and potent 2-HG inhibition in a HT1080-derived mouse xenograft model, which makes it a potential preclinical candidate to treat IDH1-mutant brain tumors.

Keywords: Acute myeloid leukemia; Blood-brain barrier; Cancer therapy; Glioblastoma; Isocitrate dehydrogenase 1; Small molecule inhibitors.

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Blood-Brain Barrier / drug effects*
  • Blood-Brain Barrier / metabolism
  • Brain Neoplasms / drug therapy*
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / pathology
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Discovery*
  • Drug Screening Assays, Antitumor
  • Female
  • Glioma / drug therapy*
  • Glioma / metabolism
  • Glioma / pathology
  • Humans
  • Isocitrate Dehydrogenase / antagonists & inhibitors*
  • Isocitrate Dehydrogenase / genetics
  • Isocitrate Dehydrogenase / metabolism
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Molecular Structure
  • Neoplasms, Experimental / drug therapy
  • Neoplasms, Experimental / metabolism
  • Neoplasms, Experimental / pathology
  • Small Molecule Libraries / chemical synthesis
  • Small Molecule Libraries / chemistry
  • Small Molecule Libraries / pharmacology*
  • Structure-Activity Relationship
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • Small Molecule Libraries
  • Isocitrate Dehydrogenase
  • IDH1 protein, human