18F-PSMA-1007 is a novel prostate-specific membrane antigen (PSMA)-based radiopharmaceutical for imaging prostate cancer (PCa). The aim of this study was to compare the diagnostic accuracy of 18F-PSMA-1007 with 68Ga-PSMA-11 PET/CT in the same patients presenting with newly diagnosed intermediate- or high-risk PCa. Methods: Sixteen patients with intermediate- or high-risk PCa underwent 18F-PSMA-1007 and 68Ga-PSMA-11 PET/CT within 15 d. PET findings were compared between the 2 radiotracers and with reference-standard pathologic specimens obtained from radical prostatectomy. The Cohen κ-coefficient was used to assess the concordance between 18F-PSMA-1007 and 68Ga-PSMA-11 for detection of intraprostatic lesions. The McNemar test was used to assess agreement between intraprostatic PET/CT findings and histopathologic findings. Sensitivity, specificity, positive predictive value, and negative predictive value were reported for each radiotracer. SUVmax was measured for all lesions, and tumor-to-background activity was calculated. Areas under receiver-operating-characteristic curves were calculated for discriminating diseased from nondiseased prostate segments, and optimal SUV cutoffs were calculated using the Youden index for each radiotracer. Results: PSMA-avid lesions in the prostate were identified in all 16 patients with an almost perfect concordance between the 2 tracers (κ ranged from 0.871 to 1). Aside from the dominant intraprostatic lesion, similarly detected by both radiotracers, a second less intense positive focus was detected in 4 patients only with 18F-PSMA-1007. Three of these secondary foci were confirmed as Gleason grade 3 lesions, whereas the fourth was shown on pathologic examination to represent chronic prostatitis. Conclusion: This pilot study showed that both 18F-PSMA-1007 and 68Ga-PSMA-11 identify all dominant prostatic lesions in patients with intermediate- or high-risk PCa at staging. 18F-PSMA-1007, however, may detect additional low-grade lesions of limited clinical relevance.
Keywords: 18F-PSMA-1007; 68Ga-PSMA-11; comparison; prostate cancer; staging.
© 2020 by the Society of Nuclear Medicine and Molecular Imaging.