Background and purpose: Microcatheterization is an important, but also difficult, technique used for the embolization of intracranial aneurysms. The purpose of this study was to investigate the application of three-dimensional (3D) printing technology in microcatheter shaping.
Methods: Nine cases of internal carotid artery posterior communicating artery aneurysm diagnosed by CT angiography were selected, and 3D printing technology was used to build a 3D model including the aneurysm and the parent artery. The hollow and translucent model had certain flexibility; it was immersed in water and the microcatheter was introduced into the water to the target position in the aneurysm, followed by heating the water temperature to 50°C. After soaking for 5 min, the microcatheter was taken out and the shaping was completed. After sterilization, the shaped microcatheter was used for arterial aneurysm embolization and evaluation was conducted.
Results: Nine cases of microcatheter shaping were satisfactory and shaping the needle was not necessary; no rebound was observed. The microcatheter was placed in an ideal position, and the stent-assisted method was used in three cases of wide-neck aneurysm. There were no complications related to surgery.
Conclusion: A new microcatheter shaping method using 3D printing technology makes intracranial artery aneurysm embolization more stable and efficient.
Keywords: aneurysm; brain; catheter; coil.
© Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.