Detection of pancreatic tumor cell nuclei via a hyperspectral analysis of pathological slides based on stain spectra

Biomed Opt Express. 2019 Aug 9;10(9):4568-4588. doi: 10.1364/BOE.10.004568. eCollection 2019 Sep 1.

Abstract

Hyperspectral imaging (HSI) provides more detailed information than red-green-blue (RGB) imaging, and therefore has potential applications in computer-aided pathological diagnosis. This study aimed to develop a pattern recognition method based on HSI, called hyperspectral analysis of pathological slides based on stain spectrum (HAPSS), to detect cancers in hematoxylin and eosin-stained pathological slides of pancreatic tumors. The samples, comprising hyperspectral cubes of 420-750 nm, were harvested for HSI and tissue microarray (TMA) analysis. As a result of conducting HAPSS experiments with a support vector machine (SVM) classifier, we obtained maximal accuracy of 94%, a 14% improvement over the widely used RGB images. Thus, HAPSS is a suitable method to automatically detect tumors in pathological slides of the pancreas.