Stoichiometric Analyses of Soluble CD4 to Native-like HIV-1 Envelope by Single-Molecule Fluorescence Spectroscopy

Cell Rep. 2019 Oct 1;29(1):176-186.e4. doi: 10.1016/j.celrep.2019.08.074.

Abstract

Analyses of HIV-1 envelope (Env) binding to CD4, and the conformational changes the interactions induce, inform the molecular mechanisms and factors governing HIV-1 infection. To address these questions, we used a single-molecule detection (SMD) approach to study the nature of reactions between soluble CD4 (sCD4) and soluble HIV-1 trimers. SMD of these reactions distinguished a mixture of one, two, or three CD4-bound trimer species. Single-ligand trimers were favored at early reaction times and ligand-saturated trimers later. Furthermore, some trimers occupied by one sCD4 molecule did not bind additional ligands, whereas the majority of two ligand-bound species rapidly transitioned to the saturated state. Quantification of liganded trimers observed in reactions with various sCD4 concentrations reflected an overall negative cooperativity in ligand binding. Collectively, our results highlight the general utility of SMD in studying protein interactions and provide critical insights on the nature of sCD4-HIV-1 Env interactions.

Keywords: HIV-1 Env trimers; association kinetics; cooperativity; ligand binding; single-molecule fluorescence; soluble CD4; stoichiometric analyses.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • CD4 Antigens / immunology*
  • Cell Line
  • HIV Infections / immunology
  • HIV-1 / immunology*
  • Humans
  • Ligands
  • Protein Binding / immunology
  • Spectrometry, Fluorescence / methods
  • env Gene Products, Human Immunodeficiency Virus / immunology*

Substances

  • CD4 Antigens
  • Ligands
  • env Gene Products, Human Immunodeficiency Virus