Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis

Blood. 2019 Nov 21;134(21):1847-1858. doi: 10.1182/blood.2019000185.

Abstract

During thrombopoiesis, megakaryocytes (MKs) form proplatelets within the bone marrow (BM) and release platelets into BM sinusoids. Phosphoinositide-dependent protein kinase-1 (PDK1) is required for Ca2+-dependent platelet activation, but its role in MK development and regulation of platelet production remained elusive. The present study explored the role of PDK1 in the regulation of MK maturation and polarization during thrombopoiesis using a MK/platelet-specific knockout approach. Pdk1-deficient mice (Pdk1-/-) developed a significant macrothrombocytopenia as compared with wild-type mice (Pdk1fl/fl). Pdk1 deficiency further dramatically increased the number of MKs without sinusoidal contact within the BM hematopoietic compartment, resulting in a pronounced MK hyperplasia and a significantly increased extramedullary thrombopoiesis. Cultured Pdk1-/- BM-MKs showed impaired spreading on collagen, associated with an altered actin cytoskeleton structure with less filamentous actin (F-actin) and diminished podosome formation, whereas the tubulin cytoskeleton remained unaffected. This phenotype was associated with abrogated phosphorylation of p21-activated kinase (PAK) as well as its substrates LIM domain kinase and cofilin, supporting the hypothesis that the defective F-actin assembly results from increased cofilin activity in Pdk1-deficient MKs. Pdk1-/- BM-MKs developed increased ploidy and exhibited an abnormal ultrastructure with disrupted demarcation membrane system (DMS). Strikingly, Pdk1-/- BM-MKs displayed a pronounced defect in DMS polarization and produced significantly less proplatelets, indicating that PDK1 is critically required for proplatelet formation. In human MKs, genetic PDK1 knockdown resulted in increased maturity but reduced platelet-like particles formation. The present observations reveal a pivotal role of PDK1 in the regulation of MK cytoskeletal dynamics and polarization, proplatelet formation, and thrombopoiesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Phosphoinositide-Dependent Protein Kinases / metabolism*
  • Animals
  • Blood Platelets / cytology
  • Blood Platelets / metabolism*
  • Cytoskeleton / metabolism*
  • Humans
  • Megakaryocytes / cytology
  • Megakaryocytes / metabolism*
  • Mice
  • Mice, Knockout
  • Thrombopoiesis / physiology*

Substances

  • 3-Phosphoinositide-Dependent Protein Kinases
  • PDPK1 protein, human
  • Pdpk1 protein, mouse