Circulating extracellular RNAs, myocardial remodeling, and heart failure in patients with acute coronary syndrome

J Clin Transl Res. 2019 Jun 8;5(1):33-43. eCollection 2019 Sep 8.

Abstract

Background: Given high on-treatment mortality in heart failure (HF), identifying molecular pathways that underlie adverse cardiac remodeling may offer novel biomarkers and therapeutic avenues. Circulating extracellular RNAs (ex-RNAs) regulate important biological processes and are emerging as biomarkers of disease, but less is known about their role in the acute setting, particularly in the setting of HF.

Methods: We examined the ex-RNA profiles of 296 acute coronary syndrome (ACS) survivors enrolled in the Transitions, Risks, and Actions in Coronary Events Center for Outcomes Research and Education Cohort. We measured 374 ex-RNAs selected a priori, based on previous findings from a large population study. We employed a two-step, mechanism-driven approach to identify ex-RNAs associated with echocardiographic phenotypes (left ventricular [LV] ejection fraction, LV mass, LV end-diastolic volume, left atrial [LA] dimension, and LA volume index) then tested relations of these ex-RNAs with prevalent HF (N=31, 10.5%). We performed further bioinformatics analysis of microRNA (miRNAs) predicted targets' genes ontology categories and molecular pathways.

Results: We identified 44 ex-RNAs associated with at least one echocardiographic phenotype associated with HF. Of these 44 exRNAs, miR-29-3p, miR-584-5p, and miR-1247-5p were also associated with prevalent HF. The three microRNAs were implicated in the regulation p53 and transforming growth factor-β signaling pathways and predicted to be involved in cardiac fibrosis and cell death; miRNA predicted targets were enriched in gene ontology categories including several involving the extracellular matrix and cellular differentiation.

Conclusions: Among ACS survivors, we observed that miR-29-3p, miR-584-5p, and miR-1247-5p were associated with both echocardiographic markers of cardiac remodeling and prevalent HF.

Relevance for patients: miR-29c-3p, miR-584-5p, and miR-1247-5p were associated with echocardiographic phenotypes and prevalent HF and are potential biomarkers for adverse cardiac remodeling in HF.

Keywords: Biomarkers; Cardiac remodelling; Echocardiographic phenotypes; Extracellular RNAs; Heart failure.