Dietary Zn has significant impacts on the growth and development of breeding rams. The objectives of this study were to evaluate the effects of dietary Zn source and concentration on serum Zn concentration, growth performance, wool traits and reproductive performance in rams. Forty-four Targhee rams (14 months; 68 ± 18 kg BW) were used in an 84-day completely randomized design and were fed one of three pelleted dietary treatments: (1) a control without fortified Zn (CON; n = 15; ~1 × NRC); (2) a diet fortified with a Zn amino acid complex (ZnAA; n = 14; ~2 × NRC) and (3) a diet fortified with ZnSO4 (ZnSO4; n = 15; ~2 × NRC). Growth and wool characteristics measured throughout the course of the study were BW, average daily gain (ADG), dry matter intake (DMI), feed efficiency (G : F), longissimus dorsi muscle depth (LMD), back fat (BF), wool staple length (SL) and average fibre diameter (AFD). Blood was collected from each ram at four time periods to quantify serum Zn and testosterone concentrations. Semen was collected 1 to 2 days after the trial was completed. There were no differences in BW (P = 0.45), DMI (P = 0.18), LMD (P = 0.48), BF (P = 0.47) and AFD (P = 0.9) among treatment groups. ZnSO4 had greater (P ≤ 0.03) serum Zn concentrations compared with ZnAA and CON treatments. Rams consuming ZnAA had greater (P ≤ 0.03) ADG than ZnSO4 and CON. There tended to be differences among groups for G : F (P = 0.06), with ZnAA being numerically greater than ZnSO4 and CON. Wool staple length regrowth was greater (P < 0.001) in ZnSO4 and tended to be longer (P = 0.06) in ZnAA treatment group compared with CON. No differences were observed among treatments in scrotal circumference, testosterone, spermatozoa concentration within ram semen, % motility, % live sperm and % sperm abnormalities (P ≥ 0.23). Results indicated beneficial effects of feeding increased Zn concentrations to developing Targhee rams, although Zn source elicited differential responses in performance characteristics measured.
Keywords: bioavailability; micron; semen; testosterone; trace minerals.