This review correlates and summarizes the role of the maternal-fetal interface in the immune tolerance of the fetus and the processes that lead to infection avoidance, emphasizing the participation of exosomes and other extracellular vesicles in both situations. Exosomes are released into the extracellular medium by several cell types and are excellent carriers of biomolecules. Host-derived exosomes and the transport of pathogen-derived molecules by exosomes impact infections in different ways. The interactions of exosomes with the maternal immune system are pivotal to a favorable gestational outcome. In this review, we highlight the potential role of exosomes in the establishment of an adequate milieu that enables embryo implantation and discuss the participation of exosomes released at the maternal-fetal interface during the establishment of an immune-privileged compartment for fetal development. The placenta is a component where important strategies are used to minimize the risk of infection. To present a contrast, we also discuss possible mechanisms used by pathogens to cross the maternal-fetal interface. We review the processes, mechanisms, and potential consequences of dysregulation in all of the abovementioned phenomena. Basic information about exosomes and their roles in viral immune evasion is also presented. The interactions between extracellular vesicles and bacteria, fungi, parasites and proteinaceous infectious agents are addressed. The discovery of the placental microbiota and the implications of this new microbiota are also discussed, and current proposals that explain fetal/placental colonization by both pathogenic and commensal microbes are addressed. The comprehension of such interactions will help us to understand the immune dynamics of human pregnancy and the mechanisms of immune evasion used by different pathogens.
Keywords: Bacteria; Exosomes; Extracellular vesicles; Fungi; Genetics; Gestation; Immunology; Infection; Maternal-fetal; Microbiology; Parasites; Placenta; Prion; Vertical transmission; Viruses.
© 2019 Published by Elsevier Ltd.