A hemagglutinin stabilized stem nanoparticle (HA-SS-np) that is designed to provide broad protection against influenza is being developed as a potential vaccine. During an early formulation screening study, reducing gel (rCGE) analysis indicated product degradation in a few candidate buffers at the first-week accelerated stability point, whereas no change was shown in the size exclusion chromatography (SEC) measurement. A LC-MS workflow was therefore applied to investigate the integrity of this large HA-SS-np vaccine molecule (≈ 1 MDa). Application of LC-MS was critical to rationalize the conflicting results from the rCGE and SEC assays and led to the discovery that (1) an unexpected sequence clipping in the HA-SS-np subunits occurred, explaining the atypical reducing gel profile, and (2) an undisrupted disulfide bond held the two fragments together, explaining the unchanged SEC profile. This analytical case study led to a formulation buffer redesign, which mitigated the issue.
Keywords: Characterization; Clipping; Influenza; LC-MS; Nanoparticles; Vaccine.