Bactericidal Activity of Lactic Acid against Clinical, Carbapenem-Hydrolyzing, Multi-Drug-Resistant Klebsiella pneumoniae Planktonic and Biofilm-Forming Cells

Antibiotics (Basel). 2019 Oct 9;8(4):181. doi: 10.3390/antibiotics8040181.

Abstract

: Carbapenem resistant Klebsiella pneumoniae has been highlighted to be a critical pathogen by the World Health Organization. The objectives of this study were to assess the efficacy of lactic acid (LA) against planktonic cells and biofilms formed by carbapenem-hydrolyzing K. pneumoniae isolates obtained from the nares of preterm neonates. Time-kill assays with graded percentages of (v/v) LA in water were initially carried out against planktonic cells of a meropenem (MRP)-resistant K. pneumoniae isolate, JNM11.C4. The efficacy parameters such as optimal incubation time and minimum inhibitory concentration were determined by comparing colony-forming unit counts (log(10)CFU). Scanning electron microscopy was used to visualize cell damage. Likewise, JNM11.C4 biofilms were treated with graded series of (v/v) LA. Six carbapenem-hydrolyzing isolates were next used to validate the results. A reduction of 3.6 ± 0.6 log(10) CFU/mL in JNM11.C4 planktonic cells and >3 ± 0.03log(10) CFU/mL in biofilm-forming cells were observed using 0.225% and 2% LA, respectively, after three hours. Similar decreases in viable cell-counts were observed both in the case of planktonic (˃3.6 ± 0.3log(10) CFU/mL) and biofilm-forming cells (3.8 ± 0.3log(10) CFU/mL) across all the six clinical isolates. These results indicate that LA is an effective antimicrobial against planktonic carbapenem-hydrolyzing K. pneumoniae cells and biofilms.

Keywords: Klebsiella pneumoniae; bactericidal; biofilm-forming; carbapenem-hydrolyzing; lactic acid; meropenem; planktonic.