A novel Tmem119-tdTomato reporter mouse model for studying microglia in the central nervous system

Brain Behav Immun. 2020 Jan:83:180-191. doi: 10.1016/j.bbi.2019.10.009. Epub 2019 Oct 8.

Abstract

Microglia are resident immune cells of the central nervous system (CNS). The exact role of microglia in CNS disorders is not clear due to lack of tools to discriminate between microglia and infiltrating myeloid cells. Here, we present a novel reporter mouse model targeting a microglia-specific marker, TMEM119, for studying microglia in health and disease. By placing a reporter cassette (GSG-3xFlag-P2A-tdTomato) between the coding sequence of exon 2 and 3'UTR of the Tmem119 gene using CRISPR/Cas9 technology, we generated a Tmem119-tdTomato knock-in mouse strain. Gene expression assay showed no difference of endogenous Tmem119 in the CNS of Tmem119tdTomato/+ relative to wild-type mice. The cells expressing tdTomato were recognized by immunofluorescence staining using commercially available anti-TMEM119 antibodies. Additionally, immunofluorescence and flow cytometry techniques revealed that tdTomato+ cells are detected throughout the CNS, but not in peripheral tissues of Tmem119tdTomato/+ mice. Aging does not influence TMEM119 expression as tdTomato+ cells were detectable in the CNS of older mice (300 and 540 days old). Further immunofluorescence characterization shows that tdTomato+ cells colocalize with Iba1+ cells in the brain, but not with neurons, astrocytes or oligodendrocytes. Moreover, flow cytometry analysis of brain tissues of adult mice demonstrates that the majority of microglia CD45loCD11b+ cells (96.3%) are tdTomato-positive; and a minority of infiltrating CD45hiCD11b+ myeloid cells (5.3%) are also tdTomato-positive, which we further characterized and found that tdTomato expression is in part of choroid plexus macrophages but not in meningeal and perivascular macrophages. Functionally, using an acute injury model, we measured time-lapse activation of tdTomato-labeled microglia by transcranial two-photon microscopy in live Tmem119tdTomato/+ mice. Taken together, the Tmem119-tdTomato reporter mouse model is a valuable tool to specifically study the role of microglia in health and disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Central Nervous System / cytology*
  • Central Nervous System / metabolism*
  • Female
  • Genes, Reporter*
  • Luminescent Proteins / genetics*
  • Luminescent Proteins / metabolism*
  • Macrophages / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Microglia / metabolism*
  • Models, Animal*
  • Red Fluorescent Protein

Substances

  • Luminescent Proteins