Exploiting the Zonulin Mouse Model to Establish the Role of Primary Impaired Gut Barrier Function on Microbiota Composition and Immune Profiles

Front Immunol. 2019 Sep 19:10:2233. doi: 10.3389/fimmu.2019.02233. eCollection 2019.

Abstract

The balanced interplay between epithelial barrier, immune system, and microbiota maintains gut homeostasis, while disruption of this interplay may lead to inflammation. Paracellular permeability is governed by intercellular tight-junctions (TJs). Zonulin is, to date, the only known physiological regulator of intestinal TJs. We used a zonulin transgenic mouse (Ztm) model characterized by increased small intestinal permeability to elucidate the role of a primary impaired gut barrier on microbiome composition and/or immune profile. Ztm exhibit an altered gene expression profile of TJs in the gut compared to wild-type mice (WT): Claudin-15, Claudin-5, Jam-3, and Myosin-1C are decreased in the male duodenum whereas Claudin-15, Claudin-7, and ZO-2 are reduced in the female colon. These results are compatible with loss of gut barrier function and are paralleled by an altered microbiota composition with reduced abundance of the genus Akkermansia, known to have positive effects on gut barrier integrity and strengthening, and an increased abundance of the Rikenella genus, associated to low-grade inflammatory conditions. Immune profile analysis shows a subtly skewed distribution of immune cell subsets toward a pro-inflammatory phenotype with more IL-17 producing adaptive and innate-like T cells in Ztm. Interestingly, microbiota "normalization" involving the transfer of WT microbiota into Ztm, did not rescue the altered immune profile. Our data suggest that a primary impaired gut barrier causing an uncontrolled trafficking of microbial products leads to a latent pro-inflammatory status, with a skewed microbiota composition and immune profile that, in the presence of an environmental trigger, as we have previously described (1), might promote the onset of overt inflammation and an increased risk of chronic disease.

Keywords: chronic inflammatory diseases; dysbiosis; gut permeability; immunity; microbial products trafficking; microbiota; tight-junctions; zonulin transgenic mouse.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Disease Models, Animal
  • Female
  • Gastrointestinal Microbiome / immunology*
  • Haptoglobins / immunology*
  • Inflammation / immunology
  • Interleukin-17 / immunology
  • Intestinal Mucosa / immunology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Microbiota / immunology*
  • Permeability
  • Protein Precursors / immunology*
  • Tight Junctions / immunology

Substances

  • Haptoglobins
  • Interleukin-17
  • Protein Precursors
  • zonulin