BACKGROUND: The diagnostic use and therapeutic effect of near infrared fluorescence (NIF) imaging and photodynamic therapy (PDT) was investigated for gallbladder cancer using indocyanine green (ICG)-lactosomes. RESULTS: PDT was toxic for NOZ cells treated with ICG-lactosomes. Fluorescence intensity in the tumor region of mice administered ICG-lactosomes, but not ICG alone, was higher than the healthy contralateral region ≥24 hours after injection. PDT exerted immediate and continuous phototoxic effects in NOZ implanted mice injected with ICG-lactosomes. Enhanced antitumor effects were observed in the twice irradiated group compared with the once irradiated group. METHOD: ICG or ICG-lactosomes were added to the human gallbladder cancer cell line NOZ followed by PDT and cell viability was measured. Mass spectrometry of ICG and ICG-lactosomes was performed after PDT. ICG or ICG-lactosomes were intravenously administered to BALB/c nude mice implanted subcutaneously with NOZ cells and fluorescence was evaluated by NIF imaging. Implanted tumors underwent PDT and antitumor effects were analyzed after performing irradiation once or twice in ICG-lactosome groups. CONCLUSIONS: ICG-lactosomes accumulated in xenograft tumors and PDT had an antitumor effect on these malignant tumors. NIF imaging with ICG-lactosomes and PDT may be useful diagnostic and/or therapeutic agents for gallbladder cancer.
Keywords: gall bladder cancer; indocyanine green; lactosome; near infrared fluorescence imaging; photodynamic therapy.
Copyright: © 2019 Hishikawa et al.