Tumor cell metabolism and tumor blood vessel proliferation are distinct from normal cells. The resulting tumor microenvironment presents a characteristic of hypoxia, which greatly limits the generation of oxygen free radicals and affects the therapeutic effect of photodynamic therapy. Here, we developed an oxygen-independent free radical generated nanosystem (CuFeSe2-AIPH@BSA) with dual-peak absorption in both near-infrared (NIR) regions and utilized it for imaging-guided synergistic treatment. The special absorption provides the nanosystem with high photothermal conversion efficiency and favorably matched photoactivity in both I and II NIR biological windows. Upon NIR light irradiation, the generated heat could prompt AIPH release and decompose to produce oxygen-independent free radicals for killing cancer cells effectively. The contrastive research results show that the enhanced therapeutic efficacy of NIR-II over NIR-I is principally due to its deeper tissue penetration and higher maximum permission exposure that benefits from a longer wavelength. Hyperthermia effect and the production of toxic free radicals upon NIR-II laser illumination are extremely effective in triggering apoptosis and death of cancer cells in the tumor hypoxia microenvironment. The high biocompatibility and excellent anticancer efficiency of CuFeSe2-AIPH@BSA allow it to be an ideal oxygen-independent nanosystem for imaging-guided and NIR-II-mediated synergistic therapy via systemic administration.
Keywords: CuFeSe2; free radicals; hypoxia; oxygen-independent; photothermal; second near-infrared window.