The central aim in ecometabolomics and chemical ecology is to pinpoint chemical features that explain molecular functioning. The greatest challenge is the identification of compounds due to the lack of constitutive reference spectra, the large number of completely unknown compounds, and bioinformatic methods to analyze the big data. In this study we present an interdisciplinary methodological framework that extends ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) with data-dependent acquisition (DDA-MS) and the automated in silico classification of fragment peaks into compound classes. We synthesize findings from a prior study that explored the influence of seasonal variations on the chemodiversity of secondary metabolites in nine bryophyte species. Here we reuse and extend the representative dataset with DDA-MS data. Hierarchical clustering, heatmaps, dbRDA, and ANOVA with post-hoc Tukey HSD were used to determine relationships of the study factors species, seasons, and ecological characteristics. The tested bryophytes showed species-specific metabolic responses to seasonal variations (50% vs. 5% of explained variation). Marchantia polymorpha, Plagiomnium undulatum, and Polytrichum strictum were biochemically most diverse and unique. Flavonoids and sesquiterpenoids were upregulated in all bryophytes in the growing seasons. We identified ecological functioning of compound classes indicating light protection (flavonoids), biotic and pathogen interactions (sesquiterpenoids, flavonoids), low temperature and desiccation tolerance (glycosides, sesquiterpenoids, anthocyanins, lactones), and moss growth supporting anatomic structures (few methoxyphenols and cinnamic acids as part of proto-lignin constituents). The reusable bioinformatic framework of this study can differentiate species based on automated compound classification. Our study allows detailed insights into the ecological roles of biochemical constituents of bryophytes with regard to seasonal variations. We demonstrate that compound classification can be improved with adding constitutive reference spectra to existing spectral libraries. We also show that generalization on compound classes improves our understanding of molecular ecological functioning and can be used to generate new research hypotheses.
Keywords: biodiversity; bryophytes; chemical ecology; chemodiversity; classification; clustering; compound classes; data-dependent acquisition; ecometabolomics; massbank; mosses.