Balance between constitutive and induced responses provides plants flexibility to cope with biotic stresses. This study tested the hypothesis that invasion of grapevine wood by esca-associated fungi induces the production of defensive compounds as part of locally- and systemically-induced responses. In a vineyard, different symptomatic expressions of "Esca complex" in Vitis vinifera L. 'Malvasia' were evaluated in annual inspections. Then, levels of phenolics and fatty acids were determined in asymptomatic leaves of brown wood streaking (BWS) and grapevine leaf stripe (GLSD) vines, and in symptomatic leaves of GLSD and apoplectic vines; the results were compared with levels in healthy vines. In asymptomatic leaves of BWS and some GLSD vines, levels of phenolics decreased, independent of the total phenolic group. Such responses were usually associated with an increase in levels of linoleic, γ-linolenic and arachidonic acids, well-known signal transduction mediators. In symptomatic leaves, levels of phenolics increased, which is consistent with a locally-induced response; the onset of symptoms coincided with the highest increases e.g., 35% for quercetin-3-O-glucuronide. Thus, the long latency period between trunk invasion by fungi and visible foliar damage and the year-to-year fluctuation in symptomatic expressions observed with "Esca complex" might be partially attributed to a better utilization of constitutive defenses.
Keywords: grapevine trunk diseases; preformed defenses; signal transduction; symptom severity; systemic acquired resistance.