A series of structurally diverse chrysin-chromene-spirooxindole hybrids were designed, synthesized via a Knoevenagel/Michael/cyclization of chrysin and isatylidene malononitrile derivatives through utilizing a hybrid pharmacophore approach. The newly synthesized compounds were evaluated for their in vitro anticancer activity, and most of the compounds showed stronger anti-proliferative activity than parent compound chrysin. In particular, compound 3e had the highest cytotoxicity towards A549 cells (IC50 = 3.15 ± 0.51 μM), and had better selectivity in A549 cells and normal MRC-5 cells. Furthermore, compound 3e could significantly inhibit the proliferation and migration of A549 cells in a dose-dependent manner, as well as induce the apoptosis possibly through mitochondria-mediated caspase-3/8/9 activation and multi-target co-regulation of the p53 signaling pathway. Thus, our results provide in vitro evidence that compound 3e may be a potential candidate for the development of new anti-tumour drugs.
Keywords: Anticancer agents; Chromene; Chrysin; Hybrids; Spirooxindole.
Copyright © 2019 Elsevier Ltd. All rights reserved.