The brain disorders may cause loss of some critical functions such as thinking, speech, and movement. So, the early detection of brain diseases may help to get the timely best treatment. One of the conventional methods used to diagnose these disorders is the magnetic resonance imaging (MRI) technique. Manual diagnosis of brain abnormalities is time-consuming and difficult to perceive the minute changes in the MRI images, especially in the early stages of abnormalities. Proper selection of the features and classifiers to obtain the highest performance is a challenging task. Hence, deep learning models have been widely used for medical image analysis over the past few years. In this study, we have employed the AlexNet, Vgg-16, ResNet-18, ResNet-34, and ResNet-50 pre-trained models to automatically classify MR images in to normal, cerebrovascular, neoplastic, degenerative, and inflammatory diseases classes. We have also compared their classification performance with pre-trained models, which are the state-of-art architectures. We have obtained the best classification accuracy of 95.23% ± 0.6 with the ResNet-50 model among the five pre-trained models. Our model is ready to be tested with huge MRI images of brain abnormalities. The outcome of the model will also help the clinicians to validate their findings after manual reading of the MRI images.
Keywords: Brain disease; CNN; Deep transfer learning; MRI classification; ResNet.
Copyright © 2019 Elsevier Ltd. All rights reserved.