Immunotherapy by blockade of the PD-1/PD-L1 checkpoint demonstrated amazing tumor response in advanced cancer patients including head and neck squamous cell carcinoma (HNSCC). However, the majority of HNSCC patients still show little improvement or even hyperprogression. Irradiation is currently investigated as synergistic treatment modality to immunotherapy as it increases the number of T-cells thereby enhancing efficacy of immunotherapy. Apart from this immunogenic context a growing amount of data indicates that PD-L1 also plays an intrinsic role in cancer cells by regulating different cellular functions like cell proliferation or migration. Here, we demonstrate opposing membrane localization of PD-L1 in vital and apoptotic cell populations of radioresistant (RR) and radiosensitive (RS) HNSCC cell lines up to 72 h after irradiation using flow cytometry. Moreover, strong PD-L1 expression was found in nuclear and cytoplasmic cell fractions of RR. After irradiation PD-L1 decreased in nuclear fractions and increased in cytoplasmic fractions of RR cells. In contrast, RS cell lines did not express PD-L1, neither in the nucleus nor in cytoplasmic fractions. Additionally, overexpression of PD-L1 in RS cells led to a proportional increase of vital PD-L1 positive cells after irradiation. Moreover, co-immunoprecipitation experiments revealed an interaction between Akt-1 and PD-L1, mostly in irradiated RR cells compared to RS cells suggesting a differential influence of PD-L1 on cell signaling. In summary, our data imply the need for different therapeutic strategies dependent on the molecular context in which PD-L1 is embedded.
© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].