A new approach to generate a two-photon up-conversion photoluminescence (PL) by directly exciting the gap states with continuous-wave (CW) infrared photoexcitation in solution-processing quasi-2D perovskite films [(PEA)2 (MA)4 Pb5 Br16 with n = 5] is reported. Specifically, a visible PL peaked at 520 nm is observed with the quadratic power dependence by exciting the gap states with CW 980 nm laser excitation, indicating a two-photon up-conversion PL occurring in quasi-2D perovskite films. Decreasing the gap states by reducing the n value leads to a dramatic decrease in the two-photon up-conversion PL signal. This confirms that the gap states are indeed responsible for generating the two-photon up-conversion PL in quasi-2D perovskites. Furthermore, mechanical scratching indicates that the different-n-value nanoplates are essentially uniformly formed in the quasi-2D perovskite films toward generating multi-photon up-conversion light emission. More importantly, the two-photon up-conversion PL is found to be sensitive to an external magnetic field, indicating that the gap states are essentially formed as spatially extended states ready for multi-photon excitation. Polarization-dependent up-conversion PL studies reveal that the gap states experience the orbit-orbit interaction through Coulomb polarization to form spatially extended states toward developing multi-photon up-conversion light emission in quasi-2D perovskites.
Keywords: gap states; quasi-2D perovskites; spatially extended states; two-photon absorption; up-conversion photoluminescence.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.