Assessment of telomere length (TL) in peripheral blood leukocytes is part of the diagnostic algorithm applied to patients with acquired bone marrow failure syndromes (BMFSs) and dyskeratosis congenita (DKC). Monochrome multiplex-quantitative polymerase chain reaction (MM-qPCR) and fluorescence in situ hybridization (flow-FISH) are methodologies available for TL screening. Dependent on TL expressed in relation to percentiles of healthy controls, further genetic testing for inherited mutations in telomere maintenance genes is recommended. However, the correct threshold to trigger this genetic workup is still under debate. Here, we prospectively compared MM-qPCR and flow-FISH regarding their capacity for accurate identification of DKC patients. All patients (n = 105) underwent genetic testing by next-generation sequencing and in 16 patients, mutations in DKC-relevant genes were identified. Whole leukocyte TL of patients measured by MM-qPCR was found to be moderately correlated with lymphocyte TL measured by flow-FISH (r² = 0.34; P < 0.0001). The sensitivity of both methods was high, but the specificity of MM-qPCR (29%) was significantly lower compared with flow-FISH (58%). These results suggest that MM-qPCR of peripheral blood cells is inferior to flow-FISH for clinical routine screening for suspected DKC in adult patients with BMFS due to lower specificity and a higher rate of false-positive results.
Keywords: MM-qPCR; dyskeratosis congenita; flow-FISH; telomere length; telomeropathy.
© 2019 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.