Aim: CAPOX treatment in CRC patients was reported to cause several dose-limiting toxicities, and are found responsible for treatment interruption or even discontinuation. Therefore there is a critical need for identifying the predictive biomarkers for such toxicities to prevent them. The aim of our present study is to find the influence of DPYD*9A, DPYD*6 and GSTP1 ile105val gene polymorphisms on CAPOX treatment-associated toxicities in south Indian patients with CRC.
Patients and methods: We have recruited 145 newly diagnosed and treatment naive CRC patients in the study. Each Patient received a standard treatment schedule of oxaliplatin 130 mg/m2 infusion over 2 hours on day 1 and oral capecitabine 1000mg/m2 in divided doses twice daily for the next 14 days of a 21-day cycle. 5 ml of the venous blood was collected from each patient and genomic DNA extraction and genotyping. The genotyping analysis of the selected genetic polymorphisms was carried out by real-time PCR using TaqMan SNP genotyping assays obtained from applied biosystems.
Results: The major dose-limiting toxicities observed with CAPOX treatment were thrombocytopenia, HFS and PN. DPYD*9A carries were found to be at higher risk for HFS, diarrhoea and thrombocytopenia when compared to patients with wild allele. No significant association was found between DPYD*6, GSTP1 ile105val polymorphisms and CAPOX related toxicities except for thrombocytopenia.
Conclusion: A significant association was observed between DPYD*9A polymorphism and CAPOX induced dose-limiting toxicities strengthening its role as a predictive biomarker.
Keywords: CAPOX-toxicities; DPYD*6; DPYD*9A; GSTP1 ile105va; Predictive-markers.