This article is related to research article entitled "Resolution, energy and time dependency on layer scaling in finite element modelling of laser beam powder bed fusion additive manufacturing" [1]. This data article presents a computationally efficient approximation of part-powder interface conduction heat transfer, as convection heat transfer, thus eliminating the need for powder elements in the finite element model. The heat loss profile due to part-powder conduction was first characterised for a Ti6Al4V Powder Bed Fusion process. Cooling rate data was obtained for a range of powder in-plane depths. A matching cooling rate profile was obtained from free convection from the part surface, by calibration of the convection coefficient.
Keywords: Part-powder conduction; Powder bed fusion; Process modelling; Surface free convection.
© 2019 The Authors.