Gossypol Suppresses Growth of Temozolomide-Resistant Glioblastoma Tumor Spheres

Biomolecules. 2019 Oct 10;9(10):595. doi: 10.3390/biom9100595.

Abstract

Temozolomide is the current first-line treatment for glioblastoma patients but, because many patients are resistant to it, there is an urgent need to develop antitumor agents to treat temozolomide-resistant glioblastoma. Gossypol, a natural polyphenolic compound, has been studied as a monotherapy or combination therapy for the treatment of glioblastoma. The combination of gossypol and temozolomide has been shown to inhibit glioblastoma, but it is not clear yet whether gossypol alone can suppress temozolomide-resistant glioblastoma. We find that gossypol suppresses the growth of temozolomide-resistant glioblastoma cells in both tumor sphere and adherent culture conditions, with tumor spheres showing the greatest sensitivity. Molecular docking and binding energy calculations show that gossypol has a similar affinity to the Bcl2 (B-cell lymphoma 2) family of proteins and several dehydrogenases. Gossypol reduces mitochondrial membrane potential and cellular ATP levels before cell death, which suggests that gossypol inhibits several dehydrogenases in the cell's metabolic pathway. Treatment with a Bcl2 inhibitor does not fully explain the effect of gossypol on glioblastoma. Overall, this study demonstrates that gossypol can suppress temozolomide-resistant glioblastoma and will be helpful for the refinement of gossypol treatments by elucidating some of the molecular mechanisms of gossypol in glioblastoma.

Keywords: Bcl2; dehydrogenase; glioblastoma; gossypol; temozolomide resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents, Alkylating / pharmacology*
  • Apoptosis / drug effects
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Combined Modality Therapy
  • Contraceptive Agents, Male / pharmacology*
  • Drug Resistance, Neoplasm / drug effects*
  • Drug Screening Assays, Antitumor
  • Glioblastoma / drug therapy*
  • Glioblastoma / metabolism
  • Glioblastoma / pathology
  • Gossypol / pharmacology*
  • Humans
  • Male
  • Membrane Potential, Mitochondrial / drug effects
  • Molecular Docking Simulation
  • Temozolomide / pharmacology*
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents, Alkylating
  • Contraceptive Agents, Male
  • Gossypol
  • Temozolomide