Silk fibroin (SF), a natural protein biopolymer, exhibits a favorable structure due to the existence of alternative hydrophilic and hydrophobic domains in its molecular chains, and it shows good intrinsic mechanical properties, biocompatibility, biodegradability and low immunogenicity. The properties and functions of SF can be further enhanced and enriched through its synergetic combination with graphene-based nanomaterials (GBNs), which are two-dimensional carbon nanomaterials with impressive mechanical properties, adjustable electrical conductivity, and anticipated biocompatibility. The combination of SF and GBNs can result in fantastic properties and functions upon optimizing the interactions between them, and they can be processed into various formats to tailor them for specific applications. This review presents the structures and properties of SF and GBNs, summarizes recent progress related to assemblies of SF and GBNs, and then focuses on their interfacial interactions during the process of building high performance composites with good mechanical or conductive properties. The unique interactions provide potential ideas for designing novel composites of SF and GBNs with enhanced mechanical or conductive properties. Then, we provide the latest developments related to the applications of composites of SF and GBNs in different fields, emphasizing their applications in tissue engineering and wearable devices. Some challenges and potential measures are also suggested in relation to constructing composites of SF and GBNs to widen their future applications in biomedical fields.