Break-induced replication is a specific type of DNA repair that has a co-opted role in telomere extension by telomerase-negative cancer cells. This Alternative Lengthening of Telomeres (or 'ALT') is required for viability in approximately 10% of all carcinomas, but up to 50% of the soft-tissue derived sarcomas. In several recent studies, we and others demonstrate that expression and activity of FANCM, a DNA translocase protein, is essential for the viability of ALT-associated cancers. Here we provide a summary of how and why FANCM depletion leads to deletion of ALT-controlled cancers, predominantly through a hyper-activation of break-induced replication. We also discuss how FANCM can and has been targeted in cancer cell killing, including potential opportunities in ALT and other genetic backgrounds.
Keywords: DNA repair; Fanconi anemia; Telomeres; break-induced replication; chemotherapy; precision medicine; synthetic lethal.