Flow cytometry immunophenotyping is essential for diagnosis, classification and monitoring of clonal hematopoietic diseases, particularly of hematological malignancies and primary immunodeficiencies. Optimal use of immunophenotyping for these purposes requires detailed knowledge about the phenotypic patterns of normal hematopoietic cells. In the past few decades, flow cytometry has benefited from technological developments allowing simultaneous analysis of multiple antigen stainings with ≥3-35 distinct fluorochrome-conjugated antibodies for increasingly higher numbers of cells. These advances have contributed to expand our knowledge about the phenotypic differentiation profiles of normal hematopoietic cells, from uncommitted CD34+ precursors in the bone marrow (BM) and peripheral blood (PB), to the several hundreds of populations of circulating myeloid and (B and T) lymphoid cells identified so far. Detailed dissection of the normal phenotypic profiles of hematopoietic cells has settled the basis for identification of aberrant phenotypes on leukemia and lymphoma cells. Thus, it has contributed to: i) more sensitive identification of leukemia/lymphoma cells (especially when represented at low frequencies in a sample), and ii) more accurate classification of hematological malignancies. In this manuscript, we review the major phenotypic features of hematopoietic cells, from the more immature BM CD34+ precursors committed to the myeloid and lymphoid lineages toward mature hematopoietic cells circulating in PB (e.g. neutrophils, monocytes, basophils, eosinophils, dendritic cells, erythroid cells, and B- and T-cells) and those homing to other tissues (e.g. plasma cells, mast cells).
Keywords: Bone marrow; Flow cytometry; Hematopoiesis; Immunophenotype; Lymphoid maturation; Myeloid maturation; Peripheral blood.
Copyright © 2019. Published by Elsevier B.V.