Methotrexate (MTX) is an antiproliferative drug used for treating inflammatory diseases, including psoriasis. Nevertheless, its use in localized therapy is hindered because of poor transdermal penetration. We show that MTX coupled with gold nanoparticles (GNPs) demonstrates superior antiinflammatory efficacy than MTX alone in an imiquimod-induced mouse model, significantly reducing γδ T cells, CD4+ T cells, and neutrophils. Furthermore, it was well tolerated upon systemic and topical administration. In an AGR129 human xenograft mouse model, two-week topical treatment with MTX-GNPs inhibited skin hyperplasia significantly better than topical calcipotriol-betamethasone and led to profound tissue remodeling, involving the upregulation of extracellular matrix reorganization and the downregulation of cornification and keratinization processes. The number of resident T cells in the grafts, as well as interleukin-17 production, drastically decreased upon MTX-GNP treatment. While both MTX and MTX-GNPs directly prevented the proliferation and induced apoptosis of T cells, the suppression of cytokine production was a shared mechanism of GNP and MTX-GNPs. In conclusion, MTX-GNPs influence immune and stromal components of the skin, leading to the potent inhibition of pathogenesis in preclinical psoriasis. MTX-GNPs surpass the efficacy of conventional MTX and standard of care, emerging as a non-steroidal, topical alternative for psoriasis treatment.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.