The immunosuppressive non-classical human leukocyte antigen-G (HLA-G) promotes transplant tolerance as well as viral immune escape. HLA-G expression is associated with regulatory elements targeting certain single nucleotide polymorphisms (SNPs) in the HLA-G 3' untranslated region (UTR). Thus, we evaluated the impact of HLA-G 3'UTR polymorphisms as surrogate markers for BK polyomavirus (BKPyV) replication or nephropathy (PyVAN) and acute cellular and antibody mediated rejection (ACR/AMR) in 251 living-donor kidney-transplant recipient pairs. After sequencing of the HLA-G 3'UTR, fourteen SNPs between +2960 and +3227 and the 14 bp insertion/deletion polymorphism, which arrange as UTR haplotypes, were identified. The UTR-4 haplotype in donors and recipients was associated with occurrence of BKPyV/PyVAN compared to the other UTR haplotypes. While the UTR-4 recipient haplotype provided protection against AMR, the UTR-2 donor haplotype was deleteriously associated with ACR/AMR. Deduction of the UTR-2/4 haplotypes to specific SNPs revealed that the +3003C variant (unique for UTR-4) in donors as well as in recipients is responsible for BKPyV/PyVAN and also provides protection against AMR; whereas the +3196G variant (unique for UTR-2) promotes allograft rejection. Thus, HLA-G 3'UTR variants are promising genetic predisposition markers both in donors and recipients that may help to predict susceptibility to either viral infectious complication of BKPyV or allograft rejection.
Keywords: BK virus; HLA; HLA-G 3′UTR; Human leukocyte antigen-G; Kidney transplantation; Polyomavirus nephropathy; Rejection.
Copyright © 2019. Published by Elsevier Inc.