Bone morphogenetic proteins (BMPs) play important roles in various physiological processes, especially during the formation and maintenance of various organs. In this study, we first obtained and characterized twenty BMP genes from the Trachinotus ovatus genome (designated as ToBMPs). Sequence alignment and phylogenetic analysis both indicated that the predicted amino acid sequences of ToBMP were highly conserved with corresponding homologs of other species. Moreover, a comparative analysis was performed with seven representative vertebrate genomes and found difference in number of BMP3 genes in different species, which three members, BMP3a, BMP3b-1, and BMP3b-2, existed in diploid T. ovatus, but there were four and two members in tetraploidized Cyprinus carpio (BMP3a-1, BMP3a-2, BMP3b-1, and BMP3b-2) and diploid Danio rerio (BMP3a and BMP3b), respectively. The amino acid alignment and genomic structure analysis of ToBMP3 also suggested that the BMP3 gene had expanded in T. ovatus. Furthermore, tissue expression patterns were assessed for the small intestine, liver, white muscle, brain, spleen, fin, gill, head kidney, stomach, blood, and gonads. It was discovered that BMP1, BMP2, BMP3a, BMP4, BMP6, BMP7b, BMP11, and BMP16 were ubiquitously expressed in all the tissues tested. To study the regulatory function of BMP in response to the intake of different types of food, the expression changes in BMP mRNAs were detected by qRT-PCR, and the results showed that the majority of the BMP genes had the highest mRNA levels in the small intestine and liver after ingesting pelleted feed. Our data provide a useful resource for further studies on how paralogous genes may have different expression profiles in T. ovatus.
Keywords: Bone morphogenetic protein; Gene expression; Phylogenetic analysis; Trachinotus ovatus.