Formation of cytochrome P-455 nm complexes was investigated with enantiomeric 2-nitroso-1-phenylpropane--the C-nitroso analogue of amphetamine--and optically active N-hydroxyamphetamine, in the presence of NADPH. For comparative reasons, three different drug-metabolizing enzyme systems were used, namely microsomes from control and phenobarbital-treated rats, and a reconstituted system containing the main phenobarbital-induced form of cytochrome P-450 from rat liver. In microsomes obtained from phenobarbital-treated rats, pronounced differences in the kinetics of complex formation were observed between the enantiomeric C-nitroso compounds, but not between the isomers of N-hydroxyamphetamine. In the reconstituted enzyme system the S-nitroso compound formed the P-455 nm chromophore at the highest initial rate, while the R analogue was devoid of complexing activity. The rates of complex formation from the N-hydroxylamine enantiomers were high and equal.