Surface enhanced Raman spectroscopy (SERS) is an ultrasensitive label-free analytical technique that can provide unique chemical and structural fingerprint information. However, gaining reliable quantitative analysis with SERS remains a huge challenge because of poor reproducibility and the instability of nanostructured SERS active surfaces. Herein, an effective strategy of coating Au nanoparticles (NPs) with ultrathin and uniform Prussian blue (PB) shell (Au@PB NPs) was developed for quantitative detection of dopamine (DA) concentrations in blood serum and crystal violet (CV) contaminants in lake water. The only intense PB Raman signal at 2155 cm-1 served as an ideal and interference-free internal standard (IS) for correcting fluctuations in the Raman intensities of analytes. Also, the stability of Au@PB NPs was investigated, exhibiting good functionality in strong acid solutions and thermal stability at 100 °C. This work demonstrates a convenient and fast quantitative SERS technique for detecting analyte concentrations in complex systems and has a great number of potential applications for use in analytical chemistry.