Real-time detection of the ultrafast dynamics in complex nonlinear optical systems provides novel insights into pulse interactions and dynamic patterns, especially for soliton molecules. Herein, the concept of soliton molecule is extended to the pulsating regime, revealing the dynamical diversity of soliton molecule and the universality of pulsating behavior. By virtue of the dispersive Fourier transform (DFT) technique, we present the first experimental observation of the dissociation dynamics within a pulsating soliton molecule generated in an L-band normal-dispersion mode-locked fiber laser. The results provide valuable references for resolving the interactions in complex dissipative systems.