Diagnosing canine visceral leishmaniasis (CVL) is difficult because clinical signs of the disease are non-specific and a many infected animals in endemic areas, as in Brazil, are asymptomatic. Serological tests are the most common diagnostic methods employed, but most have limitations. For this reason, the implementation of a rapid, sensitive, and specific diagnostic test for CVL has become increasingly important. In this study, we adapted a chemiluminescent enzyme-linked immunosorbent assay (CL ELISA), using two multi-epitope recombinant proteins (PQ10 and PQ20) and a crude Leishmania antigen produced using promastigotes of L. infantum, as antigens to detect CVL infection in animals from Belo Horizonte. To investigate cross-reactions, samples from dogs with other infections (babesiosis, ehrlichiosis and Trypanosoma cruzi) were tested. Assay performance validations were conducted to analyse parameters such as variability, reproducibility, and stability. CL ELISA sensitivity/specificity with PQ10 antigen was 93.1%/80.0%; with the PQ20 protein 93.1%/96.6%; and with the crude antigen 75%/73.3%. Inter-assay variability and inter-operator coefficient of variation were <7% and <15%, with PQ10 and PQ20, respectively. The accuracy of the CL ELISA was classified as excellent for PQ10 (AUC = 0.95) and PQ20 (AUC = 0.98) and moderate for the crude antigen (AUC = 0.77). The kappa score for qualitative agreement between two plate lots was excellent for PQ10 (0.89) and good for PQ20 (0.65). PQ20 remained more stable than PQ10. The CL ELISA with recombinant proteins is a promising tool to diagnose CVL.
Keywords: Canine visceral leishmaniasis; Chemiluminescent ELISA; Multiepitope proteins; Recombinant; Serological diagnosis.
Copyright © 2019 Elsevier Ltd. All rights reserved.