Objective: To select optimal therapies based on the detection of actionable genomic alterations in tumor samples is a major challenge in precision medicine.
Methods: We describe an effective process (opened December 1, 2017) that combines comprehensive genomic and transcriptomic tumor profiling, custom algorithms and visualization software for data integration, and preclinical 3-dimensiona ex vivo models for drug screening to assess response to therapeutic agents targeting specific genomic alterations. The process was applied to a patient with widely metastatic, weakly hormone receptor positive, HER2 nonamplified, infiltrating lobular breast cancer refractory to standard therapy.
Results: Clinical testing of liver metastasis identified BRIP1, NF1, CDH1, RB1, and TP53 mutations pointing to potential therapies including PARP, MEK/RAF, and CDK inhibitors. The comprehensive genomic analysis identified 395 mutations and several structural rearrangements that resulted in loss of function of 36 genes. Meta-analysis revealed biallelic inactivation of TP53, CDH1, FOXA1, and NIN, whereas only one allele of NF1 and BRIP1 was mutated. A novel ERBB2 somatic mutation of undetermined significance (P702L), high expression of both mutated and wild-type ERBB2 transcripts, high expression of ERBB3, and a LITAF-BCAR4 fusion resulting in BCAR4 overexpression pointed toward ERBB-related therapies. Ex vivo analysis validated the ERBB-related therapies and invalidated therapies targeting mutations in BRIP1 and NF1. Systemic patient therapy with afatinib, a HER1/HER2/HER4 small molecule inhibitor, resulted in a near complete radiographic response by 3 months.
Conclusion: Unlike clinical testing, the combination of tumor profiling, data integration, and functional validation accurately assessed driver alterations and predicted effective treatment.
Copyright © 2019 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.