Circular Holographic Ionization-Phase Meter

Phys Rev Lett. 2019 Sep 27;123(13):133203. doi: 10.1103/PhysRevLett.123.133203.

Abstract

We propose an attosecond extreme ultraviolet pump IR-probe photoionization protocol that employs pairs of counterrotating consecutive harmonics and angularly resolved photoelectron detection, thereby providing a direct measurement of ionization phases. The present method, which we call circular holographic ionization-phase meter, gives also access to the phase of photoemission amplitudes of even-parity continuum states from a single time-delay measurement since the relative phase of one- and two-photon ionization pathways is imprinted in the photoemission anisotropy. The method is illustrated with ab initio simulations of photoionization via autoionizing resonances in helium. The rapid phase excursion in the transition amplitude to both the dipole-allowed (2s2p)^{1}P^{o} and the dipole-forbidden (2p^{2})^{1}D^{e} states are faithfully reproduced.