Endothelial cells form the inner lining of all blood vessels and play a vital role in regulating vascular permeability. This applies to the circulation in general and also to specific capillary beds including the renal glomerular capillaries. Endothelial dysfunction, including increased permeability, is a key component of diabetes-induced organ damage. Endothelial cells together with their glycocalyx, grown on porous membranes, provide an excellent model to study endothelial permeability properties. Here we describe the measurement of two characteristics of glomerular endothelial cell (GEnC) monolayers: electrical resistance and macromolecular passage. Trans-endothelial electrical resistance provides a measure of small-pore pathways across the endothelium and provides an index of monolayer confluence and cell-cell junction integrity. Measurement of macromolecular passage provides an index of large-pore pathways and use of labeled albumin provides direct relevance to the clinically important parameter of albuminuria. The combination of the two approaches provides a fantastic tool to elucidate endothelial barrier function in vitro including in response to cytokines, pathological stimuli, and potential therapeutic agents.
Keywords: Glomerular endothelial cells (GEnC); Macromolecular permeability; Porous membrane; Trans-endothelial electrical resistance.