This work presents a systematic evaluation of 2-amino, 5-amino and 2,5-diamino substituted benzimidazo[1,2-a]quinoline-6-carbonitriles as novel pH probes with a potential application in pH sensing materials or as H+ fluoroionophores in bulk optode membranes. The study was carried out by varying the length, type and position of amino substituents in ten fluorescent dyes with the same benzimidazo[1,2-a]quinoline-6-carbonitrile core. The photophysical and acid-base properties of the dyes were investigated by the UV/Vis absorption and fluorescence spectroscopies, and interpreted by the electronic structure DFT calculations. pH sensing mechanisms and structure-property relations affecting the fluorescence response were discussed through a detailed analysis of the piperidine substituted derivatives 1-4. Push-pull donor-acceptor interactions stimulate strong fluorescence in the visible spectral range (up to Φ = 0.65 for 7) and induce significant changes in the photophysical properties associated with the acid-base equilibria (up to a 50-fold increase in the fluorescence intensity). pKa values in aqueous and mixed solutions (v/v H2O:EtOH 99:1, 50:50), appear suitable for monitoring acidic pH in solution. The most promising candidates were immobilised in thin polymer matrices by the spin coating technique to form fluorescent sensing materials - optodes, and examined as novel pH-sensitive fluoroionophores. In the liquid membrane environment, dyes exhibited significant increase of the apparent pKas by almost 4 units. Bright and blue emissive thin films showed pH response and dynamic range around pKa = 5, making them suitable for a wide range of optical sensing applications.
Keywords: Benzimidazole; DFT calculations; Fluorescence; Fluoroionophore; Quinoline; pH probe; pH sensor.
Copyright © 2019 Elsevier B.V. All rights reserved.