The early-branching Cladrastis clade of papilionoid legumes (Leguminosae, Papilionoideae) has an intriguing amphi-Pacific disjunct distribution in eastern Asia and temperate-tropical Americas. Here we used nuclear and three plastid regions to reconstruct the phylogenetic relationships and divergence times in the Cladrastis clade, as well as the evolution of morphological characters that might have been key in its biogeographic history. The ancestral character state estimation revealed that the most recent common ancestor of the Cladrastis clade was deciduous trees possessing compressed, winged fruits. The Cladrastis clade was inferred to have originated in the mid-latitude thermophilic forests of North America in the early Eocene, followed by the split between ancestors of wing-fruited Platyosprion and the non-wing-fruited group, and later the divergence of Cladrastis s.s. from the non-wing-fruited group in middle Eocene. Platyosprion and Cladrastis s.s. display an "out-of-North-America" biogeographic pattern and might have migrated to Asia via the Bering land bridge (BLB) or the North Atlantic land bridges (NALB) during middle to late Eocene. Our results, coupled with the relatively well documented fossil record for the clade, suggest that Platyosprion experienced an extinction event in North America caused by climatic cooling around the Eocene-Oligocene transition, which drove a major vegetation shift in western North America, in turn serving as a barrier for the vicariance of Pickeringia and Styphnolobium. The evolution of shrubby habit and sclerophyllous leaves in the former might be adaption to the chaparral vegetation in southwestern North America; the latter gained the trait of moniliform, succulent fruit. Styphnolobium further dispersed southward to tropical North America in the Oligocene, and eastward to Asia through BLB during middle Miocene. Subsequent sundering of BLB facilitated the vicariance of St. affine and St. japonicum.
Keywords: Bering land bridge; Biogeography; Character evolution; North American origin; The Cladrastis clade; amphi‐Pacific disjunction.
Copyright © 2019 Elsevier Inc. All rights reserved.