Clostridium chauvoei causes blackleg disease in domestic animals, especially cattle and sheep. The pathogen produces several toxins including CctA - a hemolysin and protective antigen. Molecular pathogenesis of the disease is poorly understood, possibly due to lack of genetic manipulation tools for C. chauvoei. In the present study, we report the marker-less deletion of cctA gene using the CRISPR-Cas9 system. The C. chauvoei cctA deletion mutant had negligible hemolytic and significantly reduced cytotoxic activities. To the best of our knowledge, this is the first report of genetic manipulation of C. chauvoei. The method we used in this study can be applied for genetic manipulation of C. chauvoei to better understand the pathogenesis and genetics of the pathogen.
Keywords: CRISPR-Cas9; Clostridium chauvoei; Genome editing; cctA.
Copyright © 2019 Elsevier Ltd. All rights reserved.