Airplane sanitary facilities are shared by an international audience. We hypothesized the corresponding sewage to be an extraordinary source of antibiotic-resistant bacteria (ARB) and resistance genes (ARG) in terms of diversity and quantity. Accordingly, we analyzed ARG and ARB in airplane-borne sewage using complementary approaches: metagenomics, quantitative polymerase chain reaction (qPCR), and cultivation. For the purpose of comparison, we also quantified ARG and ARB in the inlets of municipal treatment plants with and without connection to airports. As expected, airplane sewage contained an extraordinarily rich set of mobile ARG, and the relative abundances of genes were mostly increased compared to typical raw sewage of municipal origin. Moreover, combined resistance against third-generation cephalosporins, fluorochinolones, and aminoglycosides was unusually common (28.9%) among Escherichia coli isolated from airplane sewage. This percentage exceeds the one reported for German clinical isolates by a factor of 8. Our findings suggest that airplane-borne sewage can effectively contribute to the fast and global spread of antibiotic resistance.