We use broad-band dielectric spectroscopy to investigate the spin-state dependence of electrical properties of the [Fe(Htrz)2(trz)](BF4) spin crossover complex. We show that the Havriliak-Negami theory can fully describe the variation of the complex dielectric permittivity of the material across the pressure-temperature phase diagram. The analysis reveals three dielectric relaxation processes, which we attribute to electrode/interface polarization, dipole relaxation, and charge transport relaxation. The contribution of the latter appears significant to the dielectric strength. Remarkably, the permittivity and conductivity changes between the high spin and low spin states are amplified at the corresponding relaxation frequencies.