Solar radiation is a critical requirement for all solar power plants. As it is a time-varying quantity, the power output of any solar power plant is also time variant in nature. Hence, for the prediction of probable electricity generation for a few days in advance, for any solar power plant, forecasting solar radiation a few days into the future is vital. Hourly forecasting for a few days in advance may help a utility or ISO in the bidding process. In this study, 1-day-ahead to 6-day-ahead hourly solar radiation forecasting was been performed using the MARS, CART, M5 and random forest models. The data required for the forecasting were collected from a solar radiation resource setup, commissioned by an autonomous body of the Government of India in Gorakhpur, India. From the results, it was determined that, for the present study, the random forest model provided the best results, whereas the CART model presented the worst results among all four models considered.
Keywords: Applied computing; CART; Electrical engineering; Energy; Global solar radiation forecasting; M5; Mars; Radiation physics; Random forest; Statistics.
© 2019 Published by Elsevier Ltd.