Because of its essential role as a bacterial virulence factor, enzyme sortase A (SrtA) has become an attractive target for the development of new antivirulence drugs against Gram-positive infections. Here we describe 27 compounds identified as covalent inhibitors of Staphylococcus aureus SrtA by screening a library of approximately 50 000 compounds using a FRET assay followed by NMR-based validation and binding reversibility analysis. Nineteen of these compounds displayed only moderate to weak cytotoxicity, with CC50 against NIH 3T3 mice fibroblast cells ranging from 12 to 740 μM. Analysis using covalent docking suggests that the inhibitors initially associate via hydrophobic interactions, followed by covalent bond formation between the SrtA active site cysteine and an electrophilic center of the inhibitor. The compounds represent good starting points that have the potential to be developed into broad spectrum antivirulence agents as exemplified by hit-to-lead optimization of one of the compounds.
Keywords: 3-hydroxy-4H-pyran-4-one; NMR spectroscopy; antivirulence drugs; covalent inhibitors; sortase A.