In this work, we present an automated luminescence sensor for the quantitation of the insecticide thiacloprid, one of the main neonicotinoids, in lettuce samples. A simple and automated manifold was constructed, using multicommutated solenoid valves to handle all solutions. The analyte was online irradiated with UV light to produce a highly fluorescent photoproduct (λexc/λem = 305/370 nm/nm) that was then retained on a solid support placed in the flow cell. In this way, the pre-concentration of the photoproduct was achieved in the detection area, increasing the sensitivity of the analytical method. A method-detection limit of 0.24 mg kg-1 was achieved in real samples, fulfilling the Maximum Residue Limit (MRL) of The European Union for thiacloprid in lettuce (1 mg kg-1). A sample throughput of eight samples per hour was obtained. Recovery experiments were carried out at values close to the MRL, obtaining recovery yields close to 100% and relative standard deviations lower than 5%. Hence, this method would be suitable for routine analyses in quality control, as an alternative to other existing methods.
Keywords: luminescence; neonicotinoid; optosensor; solid-phase spectroscopy; thiacloprid.