Carrier-envelope phase stabilization of an Er:Yb:glass laser via a feed-forward technique

Opt Lett. 2019 Nov 15;44(22):5610-5613. doi: 10.1364/OL.44.005610.

Abstract

Few-cycle pulsed laser technology highlights the need for control and stabilization of the carrier-envelope phase (CEP) for applications requiring shot-to-shot timing and phase consistency. This general requirement has been achieved successfully in a number of free-space and fiber lasers via feedback and feed-forward (FF) methods. Expanding on existing results, we demonstrate CEP stabilization through the FF method applied to a SESAM mode-locked Er:Yb:glass laser at 1.55 μm with a measured ultralow timing jitter of 2.9 as (1-3 MHz) and long-term stabilization over a duration of 8 h. Single-digit attosecond stabilization at telecom wavelengths opens a new direction in applications requiring ultra-stable frequency and time precision such as high-resolution spectroscopy and fiber timing networks.