Kernel size is an important trait determining cereal yields. In this study, we cloned and characterized TaDA1, a conserved negative regulator of kernel size in wheat (Triticum aestivum). The overexpression of TaDA1 decreased the size and weight of wheat kernels, while its down-regulation using RNA interference (RNAi) had the opposite effect. Three TaDA1-A haplotypes were identified in Chinese wheat core collections, and a haplotype association analysis showed that TaDA1-A-HapI was significantly correlated with the production of larger kernels and higher kernel weights in modern Chinese cultivars. The haplotype effect resulted from a difference in TaDA1-A expression levels between genotypes, with TaDA1-A-HapI resulting in lower TaDA1-A expression levels. This favourable haplotype was found having been positively selected during wheat breeding over the last century. Furthermore, we demonstrated that TaDA1-A physically interacts with TaGW2-B. The additive effects of TaDA1-A and TaGW2-B on kernel weight were confirmed not only by the phenotypic enhancement arising from the simultaneous down-regulation of TaDA1 and TaGW2 expression, but also by the combinational haplotype effects estimated from multi-environment field data from 348 wheat cultivars. A comparative proteome analysis of developing transgenic and wild-type grains indicated that TaDA1 and TaGW2 are involved in partially overlapping but relatively independent protein regulatory networks. Thus, we have identified an important gene controlling kernel size in wheat and determined its interaction with other genes regulating kernel weight, which could have beneficial applications in wheat breeding.
Keywords: TaDA1; TaGW2; Triticum aestivum; additive effect; kernel size; kernel weight.
© 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.